

An das Basaltwerk Pauliberg GmbH. & CO KG Landsee /Pauliberg 7341 Markt St. Martin

MAPAG Materialprüfung G.m.b.H 2352 Gumpoldskirchen, Industriestraße 7 www.mapag.at

Baustoffuntersuchung Tel.: 0 22 52 / 62 797

Fax: DW 33 bau@mapag.at

Tel.: 0 22 52 / 63 563 Umweltanalytik

umwelt@mapag.at Fax: DW 46

Bankverbindung: ERSTE Bank

IBAN: AT29 2011 1000 0514 8111 - BIC: GIBAATWW

LG Wiener Neustadt FN 477760p - DVR: 0386553 - ATU72566939

Gumpoldskirchen, 06.07.2023 Labor Nr.: 2888/2023.1

PRÜFBERICHT

Prüfung im Rahmen der Eignungsprüfung gemäß EN 13242:2002 und RVS 08.15.01:2017 ungeb. Oberes Tragschichtmaterial BK 0/63 U3 im angelieferten Zustand

Betreff / Baustelle: Werk Pauliberg

Deponie, kegelförmige Aufschüttung Entnahmestelle:

entnommen: MAPAG Eingangsart:

Datum: 08.05.2023

Eingelangt am: 08.05.2023

Prüfzeitraum: 08.05.-21.06.2023

Die Probenahme erfolgte gemäß EN 932-1:1996 und die Probenteilung gemäß EN 932-2:1999.

Die Untersuchungen wurden gemäß RVS 08.15.01, Ausgabe 2017, durchgeführt.

Für die Prüfung des Widerstandes gegen Sonnenbrand wurde der Widerstand gegen Zertrümmerung gemäß EN 1097-2:2020, Abschnitt 5 im Los Angeles Prüfverfahren an der Kornklasse 8/11 vor bzw. nach dem Kochversuch bestimmt und der Masseverlust nach 36-stündigem Kochen gemäß EN 1367-3:2001 nachgewiesen.

Eine Teilprobe des Materials wurde nach Durchführung eines modifizierten Proctorversuchs an eine Prüfstelle zur Bestimmung des Mineralbestandes gemäß ÖNORM B 4810:2013, Punkt 7, außerhalb der Akkreditierung, übersandt.

Die Ergebnisse können den Beilagen 1 bis 4 entnommen werden.

Eine Kopie des Entnahmeprotokolls ist als Beilage 5 beigelegt.

Beurteilung

entnommene und untersuchte Material entspricht bezüglich Korngrößenverteilung, Überkornanteil G_A85, Kornform SI₄₀, Anteil an gebrochenen Körnern C_{90/3}, Widerstand gegen Zertrümmerung LA₄₀, Sonnenbrand von Basalt SB_{LA} und Frostbeständigkeit F₂, ermittelt über die Wasseraufnahme WA242, den Anforderungen der RVS 08.15.01 an ungebundenes Oberes Tragschichtmaterial BK 0/63 U3.

Die o.a. Probe ist frostsicher, da aufgrund der tonmineralogischen Untersuchung im eingebauten Zustand gemäß ÖNORM B 4811 maximal 7 % kleiner 0,02 mm zulässig sind.

basaltwerk@pauliberg.at

2888/2023.1

Dieser Bericht umfasst 1 Seite und 5 Beilagen.

Dipl.-HTL-Ing. H. Waldhans Zeichnungsberechtigter

PRÜFBERICHT

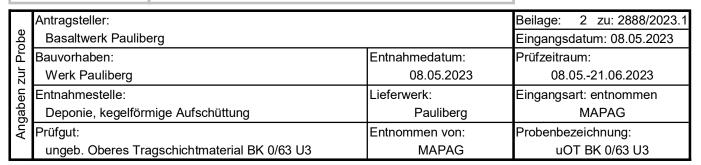
Startlich akkreditierte Prüf- und Inspektionss

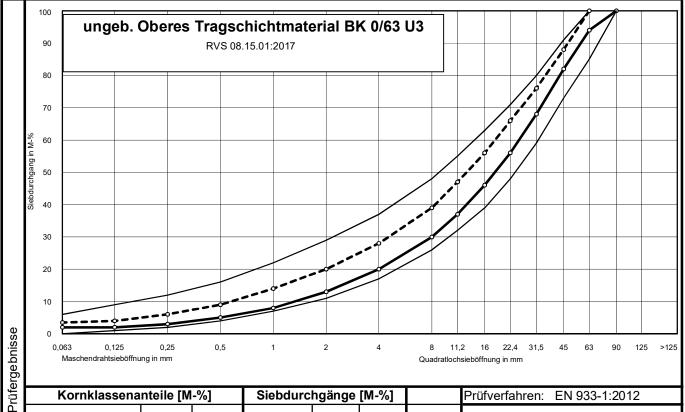
Labor Nr.: 2888/2023.1

UNGEBUNDENE TRAGSCHICHTEN Korngrößenverteilung

	Antragsteller:	Beilage: 1 zu: 2888/2023.1		
ope	Basaltwerk Pauliberg	Eingangsdatum: 08.05.2023		
Pro	Bauvorhaben:	Entnahmedatum:	Prüfzeitraum:	
zur	Werk Pauliberg	08.05.2023	08.0521.06.2023	
	Entnahmestelle:	Lieferwerk:	Eingangsart: entnommen	
Angaben	Deponie, kegelförmige Aufschüttung	Pauliberg	MAPAG	
A _D	Prüfgut:	Entnommen von:	Probenbezeichnung:	
	ungeb. Oberes Tragschichtmaterial BK 0/63 U3	MAPAG	uOT BK 0/63 U3	

	KENNWERT		Prüfverfahren	Istwert	Sollwert	
1	KORNGRÖßENVERTEILUNG		siehe Beilage 2			
2	ÜBERKORN		-		G _A 85	
2.1	Überkorn	[M-%]	EN 933-1:2012	6	1 - 15	
3	MAXIMAL ZULÄSSIGER FEINANTEIL (FR	OSTSIC	HERHEIT)			
3.1	Anteil < 0,063 mm vor mod. Proctor	[M-%]	EN 933-1:2012	2,0		
3.2	Anteil < 0,063 mm nach mod. Proctor	[M-%]	EN 933-1:2012	4	≤ 4	
3.3	Anteil < 0,02 mm nach mod. Proctor	[M-%]	ÖN B 4810:2013		≤ 7 ¹⁾	
3.4	Rohdichte	[Mg/m³]				
3.5	Frosthebungsversuche	ÖN B 4810:2013				
4	KORNFORMKENNZAHL (SI) (Anteil schle	rmter Körner) > 4	SI ₄₀			
4.1	Anteil 4/GK (4/8, 8/16, 16/32, 32/63)		EN 933-4:2008	3	≤ 40	
5	ANTEIL AN GEBROCHENEN KÖRNERN >			C _{90/3}		
5.1	Anteil > 50 % gebrochene Oberfläche	[M-%]	EN 933-5:1998	100	90 - 100	
5.2	Anteil > 90 % gerundete Oberfläche	[M-%]		0	0 - 3	
6	WIDERSTAND GEGEN ZERTRÜMMERUN		LA ₄₀			
6.1	Los-Angeles-Koeffizient (8/11)		EN 1097-2:2020	25	≤ 40	
7	WASSERAUFNAHME		_		WA ₂₄ 2	
7.1	Scheinbare Rohdichte ρ _a	[Mg/m³]	EN 1097-6:2013	3,08		
7.2	Rohdichte auf ofentrockener Basis ρ_{rd}	[Mg/m³]	Abschnitt 8	2,90		
7.3	RD a. wassergesättigter of. tro. Basis ρ_{ssd}	[Mg/m³]		2,96		
7.4	Wasseraufn. n. 24 h Wasserlag. (4/31,5)	[M-%]	<u> </u>	2,0	≤ 2	
		en Fros	t-Tauwechsel 8/10	6)	F 2 2)	
8.1	Absplitterung nach 10 FTW < 4,0 mm				<u>≤ 2</u>	
9		asserge	halt)			
9.1	Trockendichte					
	2.1 3.1 3.2 3.3 3.4 3.5 4 4.1 5.1 5.2 6 6.1 7.1 7.2 7.3 7.4 8 8.1 9	1 KORNGRÖßENVERTEILUNG 2 ÜBERKORN 2.1 Überkorn 3 MAXIMAL ZULÄSSIGER FEINANTEIL (FROM 1998) 3.1 Anteil < 0,063 mm vor mod. Proctor 3.2 Anteil < 0,063 mm nach mod. Proctor 3.3 Anteil < 0,02 mm nach mod. Proctor 3.4 Rohdichte 3.5 Frosthebungsversuche 4 KORNFORMKENNZAHL (SI) (Anteil schlether in State	1 KORNGRÖßENVERTEILUNG 2 ÜBERKORN 2.1 Überkorn [M-%] 3 MAXIMAL ZULÄSSIGER FEINANTEIL (FROSTSICH 3.1 Anteil < 0,063 mm vor mod. Proctor [M-%] 3.2 Anteil < 0,063 mm nach mod. Proctor [M-%] 3.3 Anteil < 0,02 mm nach mod. Proctor [M-%] 3.4 Rohdichte [Mg/m³] 3.5 Frosthebungsversuche 4 KORNFORMKENNZAHL (SI) (Anteil schlecht gefo 4.1 Anteil 4/GK (4/8, 8/16, 16/32, 32/63) 5 ANTEIL AN GEBROCHENEN KÖRNERN > 4 mm 5.1 Anteil > 50 % gebrochene Oberfläche [M-%] 5.2 Anteil > 90 % gerundete Oberfläche [M-%] 6 WIDERSTAND GEGEN ZERTRÜMMERUNG 6.1 Los-Angeles-Koeffizient (8/11) 7 WASSERAUFNAHME 7.1 Scheinbare Rohdichte ρa [Mg/m³] 7.2 Rohdichte auf ofentrockener Basis ρrd [Mg/m³] 7.3 RD a. wassergesättigter of. tro. Basis ρssd [Mg/m³] 7.4 Wasseraufn. n. 24 h Wasserlag. (4/31,5) [M-%] 8 FROSTBESTÄNDIGKEIT (Widerstand gegen Frost) 8.1 Absplitterung nach 10 FTW < 4,0 mm [M-%] 9 PROCTORDICHTE (mit abgeschätztem Wasserge	1 KORNGRÖßENVERTEILUNGsiehe Beilage 22 ÜBERKORN2.1 Überkorn[M-%]EN 933-1:20123 MAXIMAL ZULÄSSIGER FEINANTEIL (FROSTSICHERHEIT)EN 933-1:20123.1 Anteil < 0,063 mm vor mod. Proctor	KORNGRÖßENVERTEILUNG siehe Beilage 2 ÜBERKORN 2.1 Überkorn [M-%] EN 933-1:2012 6 MAXIMAL ZULÄSSIGER FEINANTEIL (FROSTSICHERHEIT) 3.1 Anteil < 0,063 mm vor mod. Proctor	


Sollwerte	gemäß ÖN B 🤅	3132:20	016 / RVS 08.15.	.01:2017	Sachbearbeiter: Kadlcik
	ngen: alkriterium, Be A ₂₄ 2 ist F ₂ erfi	-			
zu 4) Korr	nformkennzahl	> 4 mr	n		
4/8	[M-% rel.]	8	[M-% abs.]	1,1	
8/16	[M-% rel.]	7	[M-% abs.]	1,4	
16/32	[M-% rel.]	2	[M-% abs.]	0,7	
32/63	[M-% rel.]	0	[M-% abs.]	0,0	
					Datum: 06.07.2023


PRÜFBERICHT

Labor Nr.:2888/2023.1

UNGEBUNDENE TRAGSCHICHTEN Korngrößenverteilung

` 						•					
K	Kornklassenanteile [M-%]			Sieb	durc	hgänge	[M-%]		Prüfverfahren: EN 933-1:2012		
				Anliefer zustand	nach Proctor			Anliefer zustand	nach Proctor		Anmerkungen:
	ük	oer 12	5mm								
90	-	125	mm			125,0	mm			iäß	
63	-	90	mm	6		90,0	mm	100		s Jem (m	
45	-	63	mm	11	12	63,0	mm	94	100	auf das 3 mm gen . 63 mm)	
32	-	45	mm	14	12	45,0	mm	82	88	· ω ω .	
22	-	32	mm	12	10	31,5	mm	68	76	Korngrößenanteil bezogen ; ierische Größtkorn von 58,8 NORM B 4810:2013 (max.	
16	-	22,4	mm	10	10	22,4	mm	56	66	u) E	Sachbearbeiter: Kadlcik
11	-	16	mm	9	9	16,0	mm	46	56	1 be	
8	-	11	mm	7	8	11,2	mm	37	47	tkor 10:2	
4	-	8	mm	10	11	8,0	mm	30	39	เกลเ röß 481	
2	-	4	mm	7	8	4,0	mm	20	28	öße ∮ Gi	
1	-	2	mm	5	5	2,0	mm	13	20	ngre cche	
0,5	-	1	mm	3	6	1,0	mm	8	14	Korngrö nerische ÖNORM	
0,25	-	0,5	mm	2	3	0,5	mm	5	9	Korngröl rechnerische ÖNORM	
0,125	-	0,25	mm	0	2	0,25	mm	3	6	ě	
0,063		0,125		0	1		5 mm	2	4		
u		0,063	mm	2,0	3,5	0,063	3 mm	2,0	3,5	4	
	Sum	nme		100	100						
						0,02	mm				
						0,002	2 mm				Datum: 06.07.2023

PRÜFBERICHT

Staatlich akkreditierte Prüf- und Inspektionsstelle

Labor Nr.: 2888/2023.1

UNGEBUNDENE TRAGSCHICHTEN Mineralkriterium

	Antragsteller:	Beilage: 3 zu: 2888/2023.1	
ope	Basaltwerk Pauliberg	Eingangsdatum: 08.05.2023	
F.	Bauvorhaben:	Entnahmedatum:	Prüfzeitraum:
zur	Werk Pauliberg	08.05.2023	08.0521.06.2023
e	Entnahmestelle:	Lieferwerk:	Eingangsart: entnommen
gab	Deponie, kegelförmige Aufschüttung	Pauliberg	MAPAG
] Ā	Prüfgut:	Entnommen von:	Probenbezeichnung:
	ungeb. Oberes Tragschichtmaterial BK 0/63 U3	MAPAG	uOT BK 0/63 U3

	anger exerce mageement at the content of the		4.0 . 2							
	KENNWERT	[%] calc.	[%] Bereich							
	MINERALKRITERIUM gemäß ÖNORM B 4810:2013									
	1. NICHT AKTIVE MINERALE									
	1.1 Quarz	4	< 5							
	1.2 Plagioklas	5	5 - 10							
	1.3 Alkalifeldspat	3	< 5							
	1.4 Kalzit		nicht identifiziert							
	1.5 Dolomit		nicht identifiziert							
	1.6 Pyroxen	65	60 - 70							
a)	1.7 Analcim	3	< 5							
niss	1.8 Pyrit	7	5 - 10							
deb	•									
Prüfergebnisse	2. MINERALE, DIE DIE FROSTSICHERHEIT NACHTEILIG BEEINFLUSSEN									
Ā	2.1 TM – Glimmergruppe	11	10 - 20							
	2.2 TM – Chloritgruppe	1	< 5							
	2.3 TM – Kaolinitgruppe	1	< 5							
	2.4 TM – Smektitgruppe	< 1	Spuren, nicht quantifizierbar							
	2.5 TM – Vermikulitgruppe		nicht identifiziert							
	2.6 TM – Mixed-Layer		nicht identifiziert							
			•							

Das untersuchte Material ist frostsicher, da aufgrund der tonmineralogischen Untersuchung im eingebauten Zustand gemäß ÖNORM B 4811:2013 maximal 7 % kleiner 0,02 mm zulässig sind.

Kennwerte aus Prufbericht übernommen.	Sachbearbeiter: Kadicik
Anmerkungen:	
	Datum: 06.07.2023

Beilage 4 zu 2888/2023.1

Widerstand gegen Zertrümmerung an 8/11 (vor Kochversuch) gemäß EN 1097-2, Abschnitt 5

Kornklasse	Los Angeles Koeffizient	Sollwert gemäß EN 13043	
8/11	25 (25,0)	≤ LA ₃₀	

Widerstand gegen Zertrümmerung an 8/11 (nach Kochversuch) gemäß EN 1097-2, Abschnitt 5

Kornklasse	Los Angeles Koeffizient	
8/11	26 (26,0)	

Widerstand gegen Sonnenbrand an der Kornklasse 8/11 gemäß EN 1367-3

	keine augenscheinlichen Anzeichen			
	von Sonnenbrand feststellbar	Sollwert gemäß EN 13043		
Kornklasse	Masseverlust nach dem Kochen			
	kleiner 4 mm	SB _{LA}		
8/11	M% 0,3	≤ 1		
	Zunahme LA nach dem Kochen			
8/11	1	≤ 8		

Qualitätssicherungs-Handbuch Anhang

Dokument AH 52 Version 1 Datum 05/2022

Entnahmeprotokoll

Seite 1 von 1

Probenahme: O Basaltwerk Pauliberg & MAPAG									
Probenahi	Probenahme gemäß ÖNORM EN 932-1 & Erstprüfung O WPK								
rioscriam					150000 (9000)				
	O uOT BK 0/32 U1 Ø uOT BK 0/63 U∮ O uUT BK 0/32 U6 O uUT BK 0/63 U6 O EHS 0/32 O								
Art der Probe	BK O 0/4 O 4/8, O 8/16, O 11/16, O 16/22, O 16/32, O 32/63, O 60/300								
	EBK O 0/2 O 0/2 f ₁₀	O 2/4, O 2/5, O 4/8, O 8/1	1, O 4	/11, O 11/16, O 1	1/22, O 16/22				
	O HMB _{60/300} O HM	MB _{300/1000} O HMB _{1000/3000}							
Hersteller	Basaltwer	k Pauliberg GmbH & Co K0	, Land	see, 7341 Markt S	St. Martin				
Produktion	sstätte: Landsee,	Basaltwerk Pauliberg							
Datum der	Probenahme:	08(e5163 und l	Jhrzeit	der Probenahme:	1030				
Lage der E	Entnahmestelle	Verladestellekegelförmige AufschüttAbwurf Förderband							
Probenahr	neverfahren	nach Abwurf der Verlagmit Schaufel aus kegelvom Förderband							
Sammelpro	obenmenge	Einzelproben à ca.	120 kg	g Σ kg					
Korngrö O Bruchflä Kornforr O LA – Ko O Sonnen	Zu prüfende Eigenschaften Xight Korngrößenverteilung O Bruchflächigkeit O Bruchflächigkeit O Methylenblau O Mineralkriterium O Kornform O Säurelösliche Sulfat O Massenverteilung O Massenverteilung O Humusgehalt O Druckfestigkeit								
Äußere Be	dingungen .6	°C & Sonne O wolkig	O Reg						
		Probenehmer		Anwes	end				
Name: (Blo	ockschrift)	KWCIK (KAP)	DICIK (MAPAG)		ZKI				
Unterschrif	Name: (Blockschrift) WAUCIK (MAPAG) ING. BUZETZKI Unterschrift: Wallak Buzeth								
Anmerkungen									